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SUMMARY

In the walls of heat exchangers that are composed of noncircular
passages, the temperature varles in a circumferential direction. A
prediction of the magnitude of this variation is necessary in order to
detect the places of highest temperature and to determine the operating
temperatures admissible for the material of which the heat exchanger is
composed. ’

A method for the determination of the temperature distribution
within the coolant and the passage walls for a special type of heat
exchanger is presented. The heat exchanger is composed of polygonal
flow passages which are heated uniformly by internal heat sources. The
Prandtl number of the coolant flowing through the passages is postulated
to be so low that the turbulent contribution to the heat flow within the
fluid can be neglected. The differential equation describing the heat
flow by conduction is solved by the relaxation method. Numerical com-
putations are carried out for a triangular and a rectangular passage
shape., The resulting ratio of the temperature differences within the
passage walls to the difference of the wall temperature and the fluid
bulk temperature is considerably larger than the temperature ratio in
similar heat exchangers using a coolant with a Prandtl number in the
neighborhood of 1.

INTRODUCTION

The conventional recuperative type of heat exchanger consists of
passages for two fluids separated by a heating surface. Heat from an
external source is transferred continuously from one fluid to the other
through the heating surfaces., In the regenerative type of heat
exchangér the two fluids pass alternately through the same passages.
During the heating period heat is transferred from a hot fluid to th@
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passage walls and is stored within the solid wall material. During the
cooling period this stored heat is\then transferred tqg a cold fluid
passing through the heat exchanger.

The heat exchanger considered in this report is very similar to the
regenerative type. It differs from it only by the fact that the heat is
generated internally by heat sources located within the passage walls
and is transferred to a coolant flowing continuously through the pas-
sages. The heat-exchanger passages are formed by a number of plates
assembled to form a honeycomb. High temperatures may be anticipated
near the corners of the flow passages thus formed. A knowledge of the
magnitude of these temperatures is necessary in order to determine the
admissible operating temperature of the heat exchanger.

In a previous report (reference 1) the temperature distribution in
the walls of similar heat exchangers was studied with the assumption
that the coolant consists of a fluld with a Prandtl number in the neigh-
borhood of 1. In the present report, the investigation carried out at

- the NACA Lewis laboratory, is extended to include coolants with a

Prandtl number very much less than 1. The Prandtl number is assumed
to be so low that the turbulent contribution to the heat transport
within the fluid can be neglected as compared with the conductive
contribution.

A knowledge of the velocity distribution within the passages is
necessgary in order to determine the temperature distribution. A thor-
ough investigation of the flow of water through tubes with noncircular
cross sections was made by Nikuradse (references 2 and 3). The velocity
profiles obtained in this investigation will be used in the present
report.

The analysis presented applies to all passage shapes for which the
velocity distribution is known and to all possible configurations of
these passage shapes. Solutions are presented, however, only for heat
exchangers composed of triangular and rectanguler passages. Cross-
sectional views of these configurations are shown in figures 1 and 2.

SYMBOLS
The following symbols are used in this report:

A cross-sectional flow area, (sq f£t)

A* A/D?, (dimensionless)

-
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u,v,w

internal perimeter of passage, (£t)

specific heat, (Btu/(1b)(°F))

hydraulic diemeter, 44/C, (£t)

distance between parallel plates, (ft)

acceleration due to gravity, (ft/secz)

thermal conductivity of coolant, (Btu/(sec)(ft)(°F))

distance measured along passage wall in circumferential
direction, (£t)

/D, (dimensionless)

residual value, (dimensionless)

coordinate normal to passage wall, (f£t)

n/D, (éimensionless)

Prandtl number, (vpcg)/k, (dimensionless)
summation index

radial coordinate, (£t)

R/D, (dimensionless)

rate of internal heat generation, (Btu/(sec)(cu £1))
well thickness, (£t)

temperature, (°F)
~

bulk temperature of coolant, éz\/ u'T aa, (°F)
A

wall temperature, (°F)

2k s
TQEEE)’ (dimensionless)

veloeity components in x-, y-, and z-directions, (£t/sec)
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u mean velocity, %fu dn, (£t/sec)
N .

u* u/u, (dimensionless)

X,¥,2 Cartesian coordinates

x*,y*2* x/D, y/D, 2/D, (dimensionless)

A increment of length, (£%)
NS A/D, (dimensionless)
€ turbulent diffusivity of heat, (sq ft/sec)
v kinematic viscosity, (sq ft/sec)
0 mass density, ((1b)(sec?)/£t%)
T time, (sec)
%% material deriveative, (g% +u é% + v g% + W g%)
v2 Laplacian operator, (82 + az + Bg)

ox oy oz
Subscripts:
c conditions for equivalent circular t‘l:l'be
m conditions at center of flow passage
Superscript:
* dimensionless quantity

ASSUMPTTIONS

A number of assumptions are necessary in order to make the problem
amenable to solution and to obtain results of a general nature. The
following assumptions are in agreement with realify for the applications
considered: ‘
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1. The Prandtl number of the fluid used as coolant is so small that
the heat flow by the turbulent mixing movements can be neglected as com-
pared with the heat flow by conduction. In reality the turbulent con-
tribution to the heat flow 1s of some importance even in liquid metals
used. as coolants. Therefore, the calculations presented herein deal
with & limiting case. In a previous report (reference 1) analogous
calculations were presented for a fluid with & Prandtl number of 1.
From the results of reference 1L and the results presented herein, it
should be possible to estimate the conditions for any fluid with &
small Prandtl number,

2. The passages of the heat exchanger are long enough and the Reyn-
0lds number is sufficiently high so that in the ¢ross section investi-
gated the flow is fully developed and turbulent. This means that the

velocity profile does not change its shape in the direction of the tube
axis.

3. The property velues for the coolant are constant. Under this
condition the flow is independent of the Prandtl number and has the same
characteristics as determined by Nikuradse for water.

4, The rate of heat generation in the walls of the heat exchanger
is uniform. Consequently the temperature within the coolant and the
walls increases linearly in a downstream direction provided the flow
is thermelly developed. By extrapolation of results for flulds with
Prandtl numbers greater than 1 (reference 4), it is found that for a
fluid with e Prandtl number less than 1 the tube length required-for
thermal development is not greater than the tube length needed for
velocity development.

5. The thickness of the passage walls 1s small as compared with
the hydraulic diameter. Consequently the heat conduction within the
walls of the heat exchanger wlll be neglected as compared with the heat
conduction within the fiuid. Coolants with & low Prandtl number are
fluids with & high heat conductivity value. Therefore, in all prac-
tical cases the heat conductivity of the wall material is not larger
than the heat conductivity of the £luid and the conduction in the wall
can be neglected as long as the wall thickness is not too large.

DIFFERENTIAL EQUATIONS DESCRIBING BEAT FLOW WITHIN COOLANT
The flow field within the coolant flowing through the passages is

described by the continuity and the momentum equations. The tempera-
ture field which is superimposed on this fileld is given by the energy
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equation. As long as the property values of the coolant are independent
of temperature and as long as free-convection effects can be neglected,
the differential equations describing the flow field are independent of
the energy equetion. The flow field therefore remains unchanged when a
heat flow from the passage walls is added to the fluid and is also inde-
pendent of the Prandtl number. Measurements of the velocity profiles
within noncircular passages which were made by Nikuradse (references 2
and 3) on water therefore describe the flow field for any other fluid.
These profiles will be used in this report.

2164

The temperature field within a turbulently flowing coolant is
described by the following equation when the temperature rise by inter-
nal friction can be neglected:

T 2 k
D—,l:-—VT Ec—g'+ e) (l)

The temperatures T din this equation are time mean values and all the
contributions of the turbulent mixing processes to the heat flow within
the coolant are summarily contained in the term CVZT. The first term

within the bracket p—]cig') can be expressed as -];’—r by definition of the
Prandtl number. It is known that there exists, if any, only a minor
dependence of the turbulent diffusivity € on the Prandtl number.
Therefore, with decreasing Prandtl number the flrst term in the bracket
of equation (1) becomes more and more important and finally for very
small Prandtl numbers the second term €V2T can be neglected as com-
pared with the first term. Thus the differential equation (1) reduces

to

o vr (2)

Dr

e

A Cartesian coordinate system may be arranged within the flow passage
in such a way that the x-axis is parallel to the axis of the passage
and normal to the plane of the drawing in figures 1 and 2. The y- and
z-axes therefore lie within a cross section of the passage. In fully
developed flow only velocity components in the x-direction are present.
(The velocities connected with the secondary flow detected by Nikuradse
and described in reference 1l are small as compared with the axial
velocities.) Under this condition the derivative BET is, for steady
oT ot
state, equal to u 3% The gradient 3% is a constant accord_"u}g to

assumption 4. Therefore, equation (2) may be written as
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This differential equation describes the temperature field within the
fluld in any cross section of the passages.

The value of the temperature gradient g% in equation (3) can be

connected with the internsal heat generation by a heat balance made up
for the entire perimeter enclosing one of the fluid passages. For
reasons of symmetry, half of the total.heat generated within the wall
vhich surrounds one passage 1s transferred by conduction to the fluid
flowing through this passage and increases its temperature in the axial
direction:

ZC - pecia & (4)

This equation is used to replace the gradient g% in equation (3).

d% . "G
dy?  dzl

The boundary condition is determined by the fact that all the heat
generated by internal heat sources within the passage walls must in
steady state be transferred into the coolant. Since, according to
assumption 5, the heat conduction within the passage walls can be neg-
lected, this condition applies to any differential length dC along the
circumference of the passages (fig. 1). Each passage wall borders on
two fluid passages (2 and b in fig. 1) and the heat flow transferred
by conduction into the coolant on both sides must be equal to the inter-
nal heat generation within the wall. This relation is described by the

equation
re dC = - k [@%}a + (%Tﬂ>b:\dc (6)

where n denotes the outward normal to the passage wall surface and
the two indices a and b refer to the two fluid passages. The inter-
nal heat generation 1 per unit volume is postulated to be constant.

Therefore, '
BT) (82[‘) rs
+ = - =— = constant (7)
(55 o On/p k

u rsC
=2 (5)
a 2ka
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Equations (5) and (7) describe the temperature field within the coolant.

DIMENSIONLESS VARIABLES

In order to generalize the analysis, by reducing the number of
parameters, the equations derived in the previous section are trans-
formed with the aid of the following dimensionless varigbles:

%

2k
Yy = %"5 Z = —

* . *
wo=o T =T(rst

Yim
we
[}
it
gis
-
glie

where the hydraulic diameter D 1is defined as four times the cross-
sectional flow area divided by the circumference of the passage. Equa-
tions (5) and (7) become

3%m*  yBp*
5 + e

&) ®

Equations (8) and (9) together with a symmetry condition fully
determine the problem. A typical symmetry condition is shown in fig-
ure 1. Here the normal derivative at point 1 and directed towards pas-
sage b 1s equal: to the normal derivative at a similarly located
point 2 and directed towards passage a.

= 4'[.1* (8)

and

The dimensionless velocity u* is a function of y*, z*, and
the Reynolds number and expresses the shape of the velocity field in
the passage. For noncircular passages the velocity field is known only
from Nikuradse's measurements for Reynolds numbers of about 40,000.
Experiments with circular tubes have shown, however, that the shape of
a turbulent velocity profile changes only slightly with Reynolds number.
In addition, the temperature field is not influenced strongly by the
velocity field (appendix A). The dependence of u* on the Reynolds
number will therefore be neglected, and the velocity profile will be
regarded as a unique function for any specific passage shdpe. Equa-
tions (8) and (9) then have a unique solution for any given passage
configuration.

2164
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CATCULATTION OF TEMPERATURE DISTRIBUTIONS

An analytic solution of equations (8) and (9) can be found only
wvhen u* is a given analytic function of y* and z* and when the
boundaries of the passages are relatively simple shapes. Neither of
these conditions apply to the problem under consideration. The equa-
tlons are therefore solved numerically by means of the relaxation
method. For this purpose they are expressed in finite-difference form.

Congider a grid, or net of points, placed into a cross section of
the flow passages as indicated in the following sketch:

*

y o
- 1
O2 |
I
|
T ©1 O Oz |
A l
|

Adjacent points are separated by & small, but finite, distance A¥. The
derivatives of T* at a point O can be approximated by differences of
the temperature at surrounding points. Thus the first derivatives are

* * * %*
(?Tf) X T (?Tf) _ Yo T
2\ A 0\ "/ A
* * * *
ar*y T To a*) _To T3
l BZ* O A* 0 BZ* 3 A*—

The second derivatives are epproximated by differences of the first
derivatives and become
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% * * *
r*  (T4TTo") - (TP T 4wyt - 2ngt

ay*Z A*Z Afz

* %* * * *
- 3%p* _ (T *F-T55) - (To*-T5%) Tl + T* - 2T4*

3z*2 NG N

With these values, equation (8) becomes
T * + T + TZ* + T - 4T5% - 4uo*A*2 = 0 (10)

The boundary condition can be expressed in finite-difference form by
assuming, for example, that points 1, O, and 3 lie along a passage wall
and points 2 and 4 in two adjacent passages. The normal derivatives
are then expressed as differences of the temperature at points 2, O,
and 4. Equation (9) becomes

[Tz T+ (T‘f Ty *):\ o
— /)= -

T + T4 - 2Tt + 248 =0 (11)

or

In some of the later calculations the wall passes through point O at an
angle of 45° with respect to the grid. The boundary condition
is then expressed as follows:

TF o+ TF o+ T+ T, - 4T 24/28 =0 (12)

Equation (10) together with boundary conditions (11) or (12) was
solved by the relaxation method for heat exchangers composed of rec-
tangular and triangular passages. In the case of the triangular pas-
sages, the solution is universal, that is, it applies to all heat
exchangers with the same passage configuration, regardless of the phys-
ical dimension. In the case of the rectangular passages, however, the
solution depends on the width-to-height ratio of the passages. Because
only one particular solution is presented for the rectangular config-
uration, the method of solution for this case will be described in
detail. The essential features of the relaxation method (see, for
example, reference 5) can be outlined as follows:

Suppose it is desired to solve a given finite-difference equation
over a certain area of integration. The equation is of the following

type:

. ¥912
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f(T*) =0 . (13)

The solution of this equatibn must also satisfy prescribed conditions
at ‘the boundary of the area of integration.

First, it is necessary to select a net of points covering the
entire area of integration. The distance A" between net points is
arbitrary, with the accuracy of the final solution increasing as the
distance between points is decreased. Next, values of T* are assumed
at each net point. In general, these assumed values of the function
will not satisfy the difference equation, and the left-hand side of
equation (13) is equal to some residual value N instead of zero. At
any given net point, it is then necessary to adjust T in order to
make N venish at that point. This adjustment of T* also changes
the residuals at adjacent net points. However, if this process of
adjustment is started at the point at which the absolute value of N
1s greatest, and is then repeated for points at which the value of the
residual is successively less, the correct values of T* for the entire
net eventually are obtained. .

This method is now applied to a heat exchanger composed of rectan-
gular passages as shown in figure 2. The problem can be simplified by
taking advantage of the symmetry of the heat exchanger. ILines AB, AE,
and DE are lines of symmetry, and there can be no flow of heat across
these lines. Furthermore, the temperature distribution is also cen-
trally symmetriec gbout point C. The temperature distribution need
therefore only be found within the area bounded by AEDCB. An enlarged
view of this area, showing some of the net points, is presented in
figure 3.

The approximate finite-difference equation for all internel points
is obtained from equation (10). For point g it is
* * k2

g - g A =T, (14)

To* + TF + Bt + Tt - 4r
Point g is the point under consideration, whereas points £, ¢, h, and
k are adjacent points. For points along a line of symmetry within the
fluld, as for example point ¢, the following equation applies.

0

* * * * * k2
Tp' + 2T + Tg" - 41" - 4u A" = N, (15)

Along wall AB, which is also a line of symmetry, equation (11) becomes
(for point e)

aTg* - 2T + 2/ =N, (16)
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The following equation is found for point t and similar equations apply
for all points along wall BCD

Ty + Ty - 20" + 28 = N (17)
Finally, the following equation can be derived for the corners of the
walls B and D by first writing an equation enalogous to equation (17)
for points m, x, and q, then eliminating Tp* with an equation anal-
ogous to equation (16) for points n and m, and finally combining the
residual values into a single value Ng>»

Ty + Ty* - 2T% + 3a% = Ny (18)
Before computing the residuals at each net point, it is necessary to
assume temperatures and to determine velocities at all points. The
velocity distributions u* for triangular and rectangular passages were
obtained from references 2 and 3 and are shown in dimensionless form in
figures 4 and 5. The temperature level within any cross section of the
passage depends on the distance of that cross section from the passage
entrance and all temperatures found will contain an arbitrary additive
constant. It is therefore possible to assume arbitrarily the tempera-
ture at one point within the configuration. An estimate of all other
temperatures can be cbtained from the circular tube solution as pre-
sented in appendix A or the flat plate solution as presented in
gppendix B.

Once the temperature distribution has been assumed, it remains to
determine the residuals &t all net points with equations similer to ,
equations (14) to (18). The gpint at which N has the largest absolute
value is then selected and T~ at that point is adjusted so that the
residual vanishes. The effect of this adjustment on the residuals at
adjacent points is calculated with the aid of the appropriate finite-
difference equation. The process is then carried out for the point at
which the next largest residual appears. Eventually, if the process
is repeated often enough, the residuals at all net points approach
zero, and the final adjusted values of T* satisfy the approximate
equations at all net points.

The accuracy of the solution can be determined by increasing the
number of net points. The change in the temperature distribution due
to an increase of the number of net points is a measure of the correct-
ness of the solution.

A

a

2164
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RESULTS

The method outlined in the previous section was applied to heat
exchangers composed of a large number of triangular and rectangular
passages. 1In each case the passages were staggered in order to mini-
mize the expected hot spots.

Temperature distribution in triangular passages. - The triangular
configuration is represented by figure 1. Each passage in this con-
figuration is an isosceles right triangle. Temperature distributions
in the walls of this heat exchanger are presented in figure 6. The
ordinate in this figure is the dimensionless wall temperature Tw*
including an additive constant. Temperature distributions found with
nets of 28, 49, and 91 grid points are included. From a comparison of
these distributions, it can be seen that the maximum error in the final
solution (91 points) is less than 5 percent of the maximum temperature
difference.

The additive constant in the solution can be eliminated by forming
g difference of the local temperature and the bulk temperature of the
fluid, where the bulk temperature is given by

Tp = L uT dA (19)

Au Jp

or, in terms of the dimensionless variables

1 *
Tp* = % j; w*T* aa (20)

In order to simplify the interpretation of the results of this
paper and for purposes of comparison with the results of reference 1,
the temperature difference (T *-Tg*) was divided by a similar temper-

ature difference for a circuler tube (TW*-TB*)C, which is found in

appendix A. This temperature-difference ratio for the triangular heat
exchanger is presented in figure 7. The use of the dimensional temper-
atures T instead of the nondimensional values T* as the ordinate of
this figure is justified when the circular tube has the same rate of
heat generation, wall thickness, and hydraulic diameter as the noncir-
cular passage. Contours of equal temperature (isotherms) within the
coolant of the trianguler heat exchanger are shown in figure 8.
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Temperature distribution in rectangular passages. - Figure 2 rep-
regsents the rectangular configuration. The width-to-height ratio of
each passage in this configuration is 3.5. The temperature-difference
ratio (T, -Tp)/(Ty-Tg). for this heat exchanger is shown in figure 9.

The temperature distribution for this case was found with a relaxation
net of 79 points. The accuracy of this solution, however, is at least
as good as the accuracy of the solution for the triangular heat
exchanger, because the dimensionless distance between net points is
smaller for the rectangular heat exchanger. Contours of equal tem-
perature within the coolant are shown in figure 10.

The width-to-height ratio of each passage in the rectangular heat
exchanger is 3.5, It is to be expected, however, that the temperature
distribution near the corners is the same for passages with any ratios
greater than 3.5. Proof of this supposition can be found in figure 11,
where the temperature profile within the coolant on a normel to the
wall at point C (fig. 2) is compared with the profile between two par-
allel infinite plates (appendix B). It is assumed that the distance d
between opposite walls is the same for both solutions. The comparison
is unsetisfactory when the temperature difference is based on the bulk
temperature of the entire passage, because that particular bulk tem-
perature includes much of the low velocity coolant near the corners.
If, however, the temperature difference is based on a local bulk tem-
perature existing at the section of the passage under consideration,
(dashed curve) then the agreement is excellent. This agreement shows
that the influence of the corners on the flow of heat at a station
halfway between the corners is already very small for a width-to-
height ratio of only 3.5. Thus, the influence of one corner on the
opposite corner is even smaller, which means that the temperature dis-
tribution in & corner of the rectangle with the width-to-height ratio
of 3.5 does not differ markedly from the temperature field in the
corner of a rectangle of any greater ratio.

Influence of velocity field on temperature f£ield. - A certain
error may be introduced by the assumption that the velocity profiles
measured by Nikuradse apply under all conditions, even in noniso-
thermal flow. In order to estimate the magnitude of this error, tem-
perature distributions in the circular tube were calculated for both
a constant velocity and a l/7th power velocity profile. Figure 12
shows that the vaeriation in the temperature distribution caused by
this extreme change in the velocity profiles is not large. It is
therefore believed that a small error in the velocibty profiles will
cause a negligible error in the temperature distribution in noncir-
cular passages as well.

2164
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Comparison with Prandtl number 1 solution. - A comparison of the
results presented herein and the results of reference 1 shows that the
ratio of the temperature differences in the walls to the difference of
the average wall temperature and the bulk temperature in heat exchangers
with triangular and rectangular passages 1s very much greater for a very
low Prandtl number than for & Prandtl number near 1. The dimensionless
temperature difference (Tw."‘—TB*)c for a circular tube and a coolant

with a very low Prandtl number is 0.146 (appendix A). The corresponding
temperature difference for a coolant with Pr = 1 is given by equa-
tion (31) of reference 1:

1lk
(Ty*-T5*) ¢ = 2 Nu

The dimensionless temperature differences in noncircular tubes can be
compared for Pr << 1l and Pr =1 by multiplying the temperature-
difference ratios by the appropriate circular tube value. The dimen-

sional temperature differences follow from the definitions of T*. It
has to be kept in mind, however, that these definitions differ in the
two reports, and that T* as used in the present report is based on
the thermal conductivity of the coolant, whereas in reference 1, T*
is based on the thermal conductivity of the wall material.

A first spproximation of the temperature distribution in the walls
of heat exchangers cooled by fluids with a Prandtl number between O and
1 might be obtained by a linear interpolation of the results of the
present report and the results of reference 1.

CONCLUSIONS

A method to calculste the temperature distribution in a-heat
exchanger composed of noncircular flow passages and cooled by a fluid
with a Prandtl number much lower than 1 has been presented.

The differential equations describing the flow of heat were written
in terms of dimensionless variables, so that their solution becomes a
function only of the geometry of the heat exchanger. The equations were
then solved for heat exchangers with triangular and rectangular pas-
sages. In the case of triangular passages, the solution 1s universal
and applies to all similar heat-exchanger configurations composed of
isosceles right triangles, In the case of rectangular passages, the
solution is a function of the width-to-height ratioc of each pessage.
Results for the rectangular heat exchanger were presented only for a
width-to-height ratic of 3.5, but it was shown that these results can
be generalized to include passages with any ratio greater than 3.5.
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Temperature differences in the walls and within the coolant of
these heat exchangers were evaluated numerically. The evaluations show
a pronounced temperature increase near the corners of the passages.

A comparison of the ratio of the temperature differences within the
wall to the difference of the average wall temperature and the coolant
bulk temperature of heat exchangers cooled with a fluid having a very
low Prandtl number and of the same temperature-difference ratio far
similar heat exchangers cooled with a fluid heving & Prandtl number of 1
shows that the temperature-difference ratios for the low Prandtl number
are much greater than those for a Prandtl number of 1.

Lewls Flight Propulsion ILaboratory,
National Advisory Committee for Aeronautics,
Cleveland, Ohio, April 10, 1951.

2164
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APPENDIX A

TEMPERATURE DISTRIBUTTION IN CIRCULAR TUBES

The transformation of equation (8) into a cylindrical coordinate
system with rotational symmetry results in:

1 ar* &1t
it -

If it is assumed that half the heat generated flows into the tube
whereas the other half flows in an outward direction, then equation (9)
becomes

df['*
it =1 AZ
(dR R = 1/2 ( )

Equation (Al) together with boundary condition (A2) can be solved
provided that u* is & known function of R¥. A simple solution can
be obtained by making the assumption that u* 1s a constant and equal
to 1. The solution of equation (Al) satisfying (A2) is

™ = R*® 40 (43)

vwhere Cq is an arbitrary constaent. The bulk temperature as defined
in equation (20) becomes

Tp* = 0.125 + Cq (A4)

The temperature difference in a circular tube under the assumption of
a constant veloeity, therefore, is expressed as follows

T* . TB* = R* - 0.125 ' (45)

A solubion more representative of the problem can be obtained by
assuming that the velocity varies as the 1/7th power of (1-R)

or, in the dimensionless system of coordinates:

u* = %’ (1-2r%) 17 (46)
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With this assumption.the solution of equation (Al) becomes

(p+15/7)
T* ='% 1n (2B") + (:L-ZR*)ls/7 + %%E%%}% + 0y
=1
o<R'5_% (A7)

Equation (A7) has a logarithimic singularity at R*=0. A solution of
equation (A1) at R*=0 exists, however. This solution is:

T*z—ﬂ_}_i 1 + C
240 ~ 2 p(7prL) © "1

=1

(48)

The bulk temperature is cobtained by multiplying equation (A7) by
w* and integrating each term of the equation. The final solution is

Tp* = - 0.146 + ¢y (49)
A temperature-difference profile is obtained “by subtracting equa-

tion (A9) from equations (A7) and (A8). This profile is plotted in

Tigure 12, together with a similar profile as represented by equa-

tion (A5).
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APPENDIX B

TEMPERATURE DISTRIBUTION BETWEEN TWO PARALIEI, INFINITE PLATES

The following equations describe the flow of heat between parallel
plates, extending to infinity in the z-direction and separated by a
distance d

Z::; = 4u* (B1)
am* '

(F‘ o 1 (B2)

D=24 (B3)

A solution of this system of equations can be obtained if u* is
a8 known function of y*. The assumption of a l/7th power profile leads

to the following expression
2 ¢y
— = (2 <
U da

u* = %-(4y*)1/7 | (B4)

or

The temperature distribution is then found to be
* 7 15/7 *
™ = =5 (4y™ -y +Cy (B5)

The bulk temperature, which is defined by equation (20), becomes

* 32
Tp = - 3= +C3 (B6)
Thus, the temperature-difference parameter for the parallel flat plates
is

15/7 * , 32

* *x_ 1 * _ 32 < F<
T Tp =5 (4v7) Y+ z5E 0<y'<1/4 (B7)
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[—See detail A

Figure 1. - Cross section through typical heat exchanger composed of
triangular passages.

Figure 2. - Cross section through typicel heat exchanger composed of
rectangular passages.
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Figure 3. - Relaxation net for rectangular heat exchanger.
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Figure 4. - Velocity contours in triangular
passage as measured in reference 2.
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Figure 5. - Velocity contours in rectangular passage as measured in reference 3.
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Figure 8. - Temperature of coolant within passage of triangular heat exchanger.
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Figure 11. - Temperature distribution within coolant for
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Figure 12. - Temperature distribution in circular tube.
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